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Abstract: An analytical solution based on a rod-on-dynamic-Winkler-foundation model is developed for the response of piles in a soll
layer subjected to vertical seismic excitation consisting of harmonic compressional waves. Closed-form solutions are defiy¢lefor:
motion of the pile head(2) the peak normal strain in the pile, ait8) the group effect between neighboring piles. The solutions are
expressed in terms of a dimensionldgeematic responséactor |, relating pile-head motion and free-field soil surface motion, a
dimensionlesstrain transmissibilityfactor| ., relating pile and soil peak normal strains, and a pile-to4pileraction factora measuring

group effects. It is shown that a pile foundation may significantly reduce the vertical seismic excitation transmitted to the base of a
structure.
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Introduction On the other hand, engineering analyses of vertical ground
motion amplification typically assume vertically propagating P
It is well known that the seismic excitation transmitted to the base waves and not inclined P-SV or Rayleigh wav&lva 1997.
of a pile-supported structure is differgitsually smallerthan the This is analogous to the classical assumption in soil amplification,
free-field motion, because of the dynamic interaction between thethat horizontal earthquake motions consist exclusively of verti-
foundation and the surrounding soil. This interaction develops cally propagating SH waves. As discussed by Sil¥897, the
even in the absence of a superstructure and is referredkin@s separation of wave types and the associated uncoupling of hori-
matic effectn the case of horizontal seismic excitation, the prob- zontal and vertical motions has been checked by comparing re-
lem has been studied in detdiFlores-Berrones and Whitman sults of coupled nonlinear models for a number of case histories
1982; Kaynia and Kausel 1982; Bargouthi 1984; Fan et al. 1991; from Loma Prieta and Northridge. Results from these studies in-
Kavvadas and Gazetas 1993; Gazetas and Mylonakis)1@98 dicate that little coupling exists between vertical and horizontal
the other hand, the problem of vertical pile response has not beenmotions, and that uncoupled analyses are realistic for control mo-
explored in depttiJi and Pak 1996 It is noted that design against ~ tions as strong as 0.5 g. Based on these findings and as a first
vertical earthquake motion is often disregarded in practice, sinceapproximation, the compressional wave model will be adopted in
structures are designed to carry vertical loads. Nevertheless, evithis work.
dence for a potentially detrimental role of vertical earthquake
motion in the recent Northridge and Kobe earthquakes has bee
presented by Papazoglou and EInagiifiog.

An issue of importance is identifying the waves present in The proplem treated in this study is shown in Fig. 1: A single
vertical earthquake recordings. The problem is complicated andgrfical pile embedded in a homogeneous soil layer resting on
only a brief discussion is given here. ThedAki and Richards  yigiq hedrock, subjected to vertical seismic excitation. The soil is
1980 suggests that in the near field, within about 10 km from the ;5sumed to be elastic with thickness Young’s modulusE

epicenter, of a shallow point source in a homogeneous elastic ;555 density., and linear hysteretic dampirfg The pile is a

medium, inclined SV and P waves dominate the vertical surface gq)ig cylinder of lengthL, diameterd, and Young’s modulug, .

motions. Beyond apout 20 km from source, i.e., peyonpl the criti- perfect contacti.e., no gap or slippages considered between

cal angle of refraction of the SV waves, the participation of the i and soil. The excitation consists of vertically propagating

SV component decreases substantially, while Rayleigh waves bet5rmonic compressional waves imposed at the base of the layer.

come increasingly more important. Soil-pile interaction is modeled by a bed of springs and dashpots

(the springs representing soil stiffness, the dashpots energy loss
!Associate Professor, City University of New York, New York, due to radiation and hysteretic energy dissipaticonnecting the

NY 10031. pile to the free-field soil. Pioneered by the late Professor Novak
professor, National Technical University, Athens, Greece. and his coworkers in the 1970(8lovak et al. 1978 the rod-on-
Note. _Discussign open until March 1, 2003. Separate _discussions mUStdynamic-WinkIer-foundation model has been applied to analyze

be submitted for individual papers. To extend the closing date by one the response of piles tateral kinematic loadsFlores-Berrones

month, a written request must be filed with the ASCE Managing Editor. . ) . ) .
The manuscript for this paper was submitted for review and possible and Whitman 1982; Bargouthi 1984; Kavvadas and Gazetas 1993;

publication on February 4, 2000: approved on January 7, 2002. This Nikolaou et al. 2001 The analysis will be extended in this paper
paper is part of thelournal of Geotechnical and Geoenvironmental ~ t0 the vertical mode. It should be mentioned to this end that,
Engineering Vol. 128, No. 10, October 1, 2002. ©ASCE, ISSN 1090- Wwhile dynamic Winkler formulations are well established for piles
0241/2002/10-860—867/$8.66.50 per page. subjected to head loading, they appear less developed for piles

"Problem Definition and Model Development
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EpA
is a complex wave number (unitdength 1) pertaining to the
attenuation of pile response with depfovak and Aboul-Ella
1978.

The free-field soil motionug(z), can be cast in the form

(4)

which corresponds to a standing wave satisfying the stress-free
condition at the soil surface. In the above equatigg=vibration
amplitude at the surface, whil* =complex wave number

U(Z) = ugo COSQ* Z

= (5)
q* =
Vo
in which Vi =V, \s(1+2iB):co_mpIex p_ropage_ltion velocity of
damped compressional waves in the soil medium.

Adopting the arguments of Novak and Aboul-E(E978), it is
sufficient to assume that the pile toe acts as a rigid disk on the
surface of a homogeneous elastic stratum of thickness equal to the
distance from the pile toe to bedrock. Accordingly, the pertinent

boundary condition is

P|Z=L:Kb(up_uff)|z=L (6)

whereK,= complex dynamic impedance of the disk. The solution

used by Novak and Aboul-EIll61978 is adopted hereitAppen-

dix 1). Also, the distributed frequency-dependent springs and
dashpotk andc can be taken from available solutions by Blaney

et al. (1979; Novak et al.(1978; Roesset(1980, and others.

subjected to seismic loads imposed directly on their shafts. To theThis paper utilizes the finite-element-based springs and dashpots

best of the writers’ knowledge, no Winkler formulations have

been applied to study pile response to vertical compressional

waves.

The present study deals mostly with single piles. There is evi-
dence, documented in several analytical stuéeg., Kaynia and
Kausel 1982; Fan et al. 199%hat group effects are of secondary
importance for kinematic response and, thereby, omitting them
generates minor error. This, of course, is in contrast with head-
loaded pile groups in which group effects may be dominant and
have to be taken into accougi€aynia and Kausel 1982; Nogami
and Chen 1984; Dobry and Gazetas 1988

Model Development

The equilibrium of vertical forces acting on the elementary pile
segment of Fig. 1 is written as
P

5 tMoz
iz

a"‘u

+(k+|mc)(up—uﬁ) 0 @)
whereP=P(z) andu,=up(z,t) denote axial force and displace-
ment, respectively;uxz=ug(z,t) =corresponding soil displace-
ment; k and c=moduli of the distributed soil springs and dash-
pots;m= pile mass per unit pile length, arg= cyclic vibrational
frequency.

Expressing the axial pile force in terms of vertical displace-
ment, P=—EpA du,/dz (compression considered positiyand
restricting the analysis to harmonic vibrationgy,(z,t)
=up(z)exdiot], ug(z,t)=ux(z)exdiot], Eq. (1) yields the gov-
erning differential equation

of Gazetas et al1992 (see Appendix )L

Enforcing the boundary condition in E¢6) and considering
stress-free conditions at the pile head, the solution to(Bqis
obtained as

Og* sing*L+ QN (1—-0)cosq*L
N(Q cosh\L+sinh\L)

Up(2) = Uso

X cosh\z+ ® cosq*z @
where() and ® =dimensionless factors:
0= o 8
T EAN (83)
B k+iwc "
TEAQIIAD (80)

Of these factors() expresses a dimensionless pile toe stiffness
while © pertains to a particular solution of EQ). As will be
shown below,® is related to the response of an infinitely long
pile.

Kinematic Response Factor

To develop insight into the nature of the solution, it is instructive
to introduce thekinematic response factor
_Upo
v Utio

9)
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Fig. 2. Kinematic response coefficiefi for different pile-soil stiff-
ness contrastsps/p,=0.625, vs=0.4, and 3=0.05. (0 =1, for
infinitely-long piles)

which relates the vibration amplitude at the pile heag)) to that

at the surface of the free-field soilif,). Without soil-pile inter-
action, u, would be equal taiz andl, equal to one. In reality,
howeveruy andu, are unequal in both amplitude and phase, and,
thereby,l, is generally complex. Due to space limitations, em-
phasis will be given to the amplitude &f, which suffices for
most practical applications.

From Egs.(7) and(9) |, is obtained as

_00g*sing*L+OA(1-0)cosg*L
v N(Q coshaL +sinhaL)
in which A, g*, ®, andQ are given by Eqs(3), (5), and(8),
respectively. Some special cases are examined below.
For an end-bearing pil€)—, Eq. (10) simplifies to

cosg*L ®
coshaL *

| +0

(10)

1,=(1-0) (11)
For the particular case of a pile which is completely free of reac-
tion at the toe(termed “fully floating pile”) Q) vanishes; thus

g* sing*L

®(T sinhAL +1>
Finally, for an infinitely long pilel.— o, the hyperbolic functions

in the denominators of the preceding equations become very
large; all equations converge to the remarkably simple expression

1,=0 (13)

Numerical results for the dimensionless fadtbare presented
in Fig. 2, plotted as functions of the dimensionless frequency a
=owd/V,. Itis seen that at low frequencig€l| is approximately
equal to one which implies that the pile follows the free-field soll
motion. With increasing frequenci®| decreases monotonically
and tends to zero ag approaches infinity. This can be interpreted
as a progressively increasimtgstructive interferenceat the pile
shaft of the high-frequencishort-wavelengthseismic waves ex-
citing the pile. The trend is, understandably, stronger at large pile-
soil stiffness contrasts. Corresponding predictions using the
plane-strain theory of Novak are also indicated in the graph. The
good agreement between the two predictions is evident confirm-
ing the insensitivity of the results to the selection of the Winkler
bed.

v

(12)
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Fig. 3. Idealized general shape of kinematic displacement fdgtor
explaining the transition frequency factorg and @, (modified after
Fan et al. 1991

With reference to piles of finite length, Fig. 3 presents the
general shape of the kinematic response fakjorlt consists of
three fairly distinct regions(1) a low-frequency region (€a,
< gy in which the “rigid-body” response of the pile to long-
period seismic excitation leads to,|~1 (see Fig. 2 (2) an
intermediate frequency region & a,<ay, characterized by a
rapid decline ofl,| with increasing frequency. This behavior is a
direct consequence of the progressively increasing incompatibil-
ity of the “wavy” pattern of vertical soil movement and the de-
formed shape of the much stiffer pile3) a high-frequency region
(a>ay,) in which |1,] fluctuates around an essentially constant
value. The limiting frequenciesaand @, are termedFan et al.
199)) first and second transition frequengcyespectively.

Regarding coefficientg@, assuming that the transition to the
intermediate frequency range occurs at the arbitrary vélle
=0.95, it appears from Figs. 4 and 5 that fold= 20, g, varies
between about 0.02 and 0.04. Of these values, the upper bound
corresponds to “soft” compliant piles and the lower bound to stiff
piles. Given that the range is relatively narrow, one may write
approximately

1.0
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02r 1000
E,/E =0
00 . . )
0.0 0.1 02 03 0.4
a=od Np

Fig. 4. Amplitude of kinematic response coefficidntfor different
pile-soil stiffness contrastst./d=20, H/L=2, p/pp,=0.625, v
=0.4, andg=0.05
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(k+iwc) i*sinq* L +K, cosg*L
I,= i a7
08} v (k+iwc—mo?)L+K,
which reveals the dependencelgfon the pile toe stiffnesk,, .
06k In the case of soft pileesayE,/E;<200), it is observed from
[, Ud =10 Fig. 4 that g, occurs at higher frequencies than for a stiff pile of
the same length. This can be explained by recalling that with soft
04r piles |®| attenuates slowly with frequendgee Fig. 2, so at fre-
20 quency (8,1, |I,] is still quite high and continues to decrease
30 with increasing g For such piles, a good estimate @f aan be
02y obtained by considering theecondharmonic (g,), in Eq. (15).
(fully ﬂo:gng pite) Accordingly,
0.0 L L L _ — -1
0.0 0.1 0.2 0.3 0.4 0= 2w+arcta+wn(%) (18)
a,=od Np q

As a first approximation{), ®, \, andg* in Eq. (18) can be

Fig. 5. Amplitude of kinematic response coefficient for different evaluated for g=2m(L/d) "2, which is obtained from Eq(18)

pile slenderness ratio&,/Es=1,000,H/L=40, ps/p,=0.625, and by neglecting the arctan term. Considering a soft pile vitd

v,=0.4,3=0.05 =20 andE,/Es=100 and 200, Eq(18) yields, respectively:
=0.33 and 0.32, which are in good agreement with the observed
values of 0.35 and 0.31 in Fig. 4.

3,~0.03, L/d=20 (14) Additional insight on the physical problem can be gained by

comparing the transition frequency,avith the fundamental natu-

As evident from Fig. 5, coefficientoaattains a much wider 5 frequency of the soil layer in compression extensignea In
range of values. Accurate estimation of, & important in the a homogeneous layer '

design of pile-supported structures because only frequencies .

smaller than g will be transmitted to the superstructure; any _m H

higher frequencies contained in the free-field soil motion will be Pores7 | g

essentially “filtered out” by the pile. L . . .
To determine &, it is observed from Eq(10) that|l,| attains Dividing Egs. (16) and(19) yields the simple expression

(19)

a minimum when the numerator in the first term in the right side &2 H
of the equation is zero. This leads to the indicial equation aOres_zr (20)
_ +arct —OQ1-0)M| (L o 15 which indicates that for a stiff pile, the second transition fre-
(8g2)p=| N +arcta N d (15) quency will be at least two times the fundamental natural fre-

quency in vertical compression extension of the soil layer.

A comparison against a rigorous elastodynamic solution by Ji
and Pak(1996 is depicted in Fig. 6. It refers to a single hollow
pile of wall thicknessh and variable slendernesk/@d), embed-
ded in a homogeneous halfspace. Although the two solutions are
not strictly comparablée.g., Ji and Pak consider Poisson’s effects
in the pile, the agreement of the results in Fig. 6 is evident.

where n=positive integer 1=1,2,3...). In principle, the
smallest frequency, ¢g,, will be the desired transition fre-
quency g,; the higher roots would define additional minima as
shown in Figs. 4 and 5. Note that, sin€e 0, \, andgq* are
functions of frequency andyais unknown, an iterative procedure
is generally required to getafrom Eq. (15).

An interesting special case is obtained with stiff piles. For
such piles, bothn andQ are small[recall that Eqs(3) and (8a)
are proportional to the inverse Q}fp]. Accordingly, the arctan Strain Transmissibility
term in Eq.(15 can be omitted leading to the simple expression

L

To examine the development of strain in the pile, it is useful to
3022’”(6

(16) introduce thestrain transmissibility factor

-1

which was obtained fon=1. S_(sp)m

As an example, for slenderness ratigsl= 10, 20, 30, and 40, (25)m
Eq. (16) yields, respectively, the values 0.31, 0.16, 0.10, and 0.08 which relates the maximum vertical normal strain in the pile
which are almost identical to those observed in Fig. 5. The above (&), to the corresponding maximum normal soil strain)g,.
result also holds for fully floating piles{Y=0) regardless of Differentiating Eq.(7) with respect to depth and introducing the
pile-soil stiffness contrast. peak soil strain £),,=uUg, g*, the strain transmissibility is ob-

A simpler way to obtain the result in E@16) is to consider tained as
that a perfectly rigid pile tends to remain motionless when the
wavelength\ of the imposed seismic wave is equal to two times

(21)

_0g* sing*L+QMN(1—-0)cosq*L

the pile length_. From the fundamental relatian= 2w V/\, sub- . A(€) coshAL +sinhAL)

zlg;tmg N=2L and multiplying both sides by/V leads to Eq. sinhAL)+© 22)
Incidentally, it is noted that the kinematic response coefficient Eq.(22) is presented graphically in Fig. 7. It is seen that, contrary

of a perfectly rigid pile is to the kinematic factofl,|, |1.| may attain values higher than
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proposed closed-form solution (Eqn 10)

a0  rigorous elastodynamic solution (Ji & Pak 1996) Fig. 7. Strain transmissibility functiot, for different pile-soil stiff-

0.8 ness contrastst./d=20, H/L=2, ps/p,=0.625, v;=0.4, and B
=0.05
06}
=
E 4l tive depending on frequengyertical displacement on the re-
ceiver pile which alters the dynamic response of the group.
In the light of the above concept, the minor importance of
021 group action in the kinematic problem can be explained given the

similarity betweenu,(z) and ug(z). Indeed, while for head-
loaded pilesuy is zero sodu(z)=up(z), in the kinematic prob-
. . . . lem the deformed shape of the pile and the surrounding soil are

0.0¢

0.0 01 02 03 04 05 very similar, sodu(z)=up(z)—ug(z)<uy(z), which ceases to
generate a strong “scattered” wave field and, consequently, an
a=0d/V, appreciable group effect.

To quantify the phenomenon, it will be assumed, following

Fig. 6. Kinematic response coefficienf: Comparison of proposed  a,6tas et al1992, thatdu(z) can be approximated by
solution with rigorous elastodynamic solution by Ji and PHE396);

E,/Es=960, ps/p,=0.25,v,=0.25,h/d=0.025, and3 =0 du(z)=(0—1)ug(z) (23)
which is based on the assumption that the particular solution of
Eq. (2) is dominant. Considering thatl) du(z) attenuates with
radial distance from a solitary pile approximately as a cylindrical

one, especially with soft piles. With increasing frequency, how- wave and(2) the attenuated wave excites the base of the spring-

ever, |l,| drops quickly and practically vanishes beyoad dashpot bed of a receiver pile in the same manner as the free-field

=0.20. Given that vertical soil strains during earthquakes are displacementis(z) (Fig. 1), the additional vertical displacement

relatively small(i.e., typically less than I0f), it seems unlikely  of a receiver pile due to the scattered wave field is

that this type of loading can inflict structural damage to the pile.

Nevertheless, kinematic pile strains could possibly affect the duy(2)=al,ur(2) (24)

safety of the pile when superimposed to other strains such aswherea=a(r,0) is aninteraction factorgiven by

those due to dead loads, negative skin friction, inertial loads a=U(r,0)(O—1) (25)

transmitted from the superstructure, etc.
in which {s=approximate cylindrical wave functio(Mylonakis
and Gazetas 1998

Group Effect op\ —112 _ r 1\ od
lh(f,w):(g) eXF{—(IJFBs)(a— E)V_ (26)

As mentioned in the Introduction, pile group effects on kinematic s

pile response are of minor importance. To understand this, it is Applying the superposition method of Poulos, the dynamic re-

instructive to view pile-to-pile interactiofPP)) as the result of  sponse of a pile group can be evaluated by considering the inter-

the interplay of two distinct motiong1) the vertical pile motion, action between individual pile pairs. The method has been shown

up(2) and(2) the free-field soil motion at large distances from the to exhibit good accuracy for dynamic loads by Kaynia and Kausel

pile, uz(z). The difference between these two displacements, (1982. The method is well known and does need not to be ex-

dU(z)=up(2) —ug(2), can be looked upon as the origin of a scat- plained hergsee Dobry and Gazetas 1988nly results are pre-

tered wave field which emanates from an oscillating pile and sented below.

propagates through the soil until it reaches a neighboring pile. ~As an example, the kinematic response of a2 symmetric

The scattered wave field imposes an additigpakitive or nega- group,uffxz), is determined analytically as
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Fig. 9. Average recorded vertical acceleration spectra for soft soil

Fig. 8. Kinematic response of:22 pile group for various pile sepa- sites (after Ambraseys and Douglas 2000

rations.E, /Es=100,L/d=20,H/L=2, ps/p,=0.625,v,=0.4, and

B=0.05
tion velocity to drop substantially to about one third or less of the
(2x2)_ ‘ above valugYang and Sato 2001 The effect of imperfect satu-
Uy “=[1+2a(s)+a(y29) ]I, ug (27) ration was recently investigated by Yang and S@000), to in-
wheres denotes the pile spacing. terpret the amplification patterns of vertical ground motion in Port
Fig. 8 plots the ratiouézxz)/uﬁ for L/d=20, H/d=40, Island, Kobe, during the severe earthquake of 1995. To match the

E,/E<=100, and three pile separation distancgsl=3, 5, and recorded motions in the 83 m dgep two-layer sitg,. the above au-
10. The response of a single pile is also shown for comparison. thors back-calculated compressional wave velocities of 330 and

Evidently PPI effects are not very important for a seismic excita- /80 mM/s, in the two layers, respectively. The corresponding satu-
tion, contrary to head-loaded piles where PPI can be dominant. Itration ratios were estimated to range between 98 and 99.6%. The
should be mentioned, however, that this conclusion is strictly ap- Same authors also showed that using the ideal shear wave velocity

p“cable 0n|y to homogeneous |ayers AS po|nted out by Gazetasof 1,500 m/S generates pOOf pl’edICtlonS Of the I'ecorded SO|I re-
et al. (1992, heterogeneous deposits containing consecutive soil SPONse. ) )
layers with sharply different stiffnesses are expected to behave Focusing in the dominant period range between 0.1 and 0.2 s

differently and trigger stronger or weaker PP effects. (0=62.8 to 31.4 radjsand considering an average compres-
sional wave velocity of about 500 m/s for an imperfectly satu-

rated medium, the range of dimensional periogi§oa ad=1m
Some Practical Considerations pile is approximately

o ) . o (314 to 62.8x1

From the above developments, it is evident that kinematic inter- ~
o : . . . 500

action influences the pile head motion at dimensionless frequen-
cies ag higher than 0.03, and may eliminate it almost entirely which is higher than the first transition frequency and may exceed
whena, is about 0.1 to 0.3. To investigate the practical signifi- the second one for long pile&ig. 4). On the other hand, with
cance of this effect, Fig. 9 presents average vertical recordedsmall-diameter piles d<0.3 m), the kinematic effect may be
spectra on soft sites, processed by Ambraseys and Do({2§1a6 negligible. It is also worth mentioning that use of 1,500 m/s as
for different magnitudes and source-to-site distances. It is seencompressional wave velocity would reduce the values in(E8).
that the range of predominant periods of the vertical spectra is by over 60%, leading to the erroneous conclusion that the vertical
between 0.1 and 0.2 s, which is much smaller than that of the kinematic effect is insignificant.
horizontal motions. In addition, analytical evidence presented by
Papazoglou and Elnash&l996 and Elnashai and Papazoglou
(1997 indicates that the fundamental natural period in the vertical Conclusions
direction T, , of conventional reinforced concrete buildings can
be less than 0.2 s even for structures with ten storys, which coin-The most important findings of the study arfé) The vertical
cides with the predominant periods of the vertical spectra. For tall motion of the pile head is always smaller than the corresponding

=0.06 to 0.13 (28)

steel buildings, Papaleontiou and Roe$4893 found thatT, is free-field surface motion/(,|<1); (2) At dimensionless frequen-
approximately equal to 1/10th of the fundamental natural period cies smaller than about 0.03,(p pile and the free-field soil
in lateral vibrations. move together. For frequencies higher thgn @he motion of the

With reference to the compressional wave velocity in the soil, pile head decreases quickly with increasing frequency. The de-
theory suggests that, in a perfectly saturated soil medium is just  crease is faster with stiff pileg3) Beyond a certain frequency
a little higher than the propagation velocity of P waves in water, (&), the amplitude of pile motion fluctuates around an essen-
i.e., about 1500-1800 m(Richart, Woods, and Hall 1970This tially constant value equal to approximately 10 to 20% of the
result, however, should be used with caution. It is well known that free-field surface motion. For stiff piless(,/E;>200), the tran-
a small deviation from perfect saturation may cause the propaga-sition frequency @ is at least two times higher than the funda-
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mental natural frequency of the layer in compression extension i = J-1;
(Eg. 20. With soft piles €,/Es<200), g, may be twice as K, = complex dynamic impedance at pile tip;
large; (4) Vertical normal strains in the pile can be larger than k = distributed vertical soil spring;
peak soil strains. Pile strain, however, decreases quickly with in- L = pile length;
creasing frequency and practically vanish beyond abayt m = pile mass per unit length;
=0.20; (5) Group effects are of secondary importance for the P = axial pile force;
kinematic problem; and6) Considering the effect of imperfect t = time;
soil saturation, vertical kinematic effects can be important for ug = vertical soil displacement;
large diametere.g., bored piles, but appear less significant for u, = vertical pile displacement;
small-diameter piles. V, = complex P-wave velocity in soil;
z = depth from soil surface;
a = interaction factor;
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o = cyclic vibrational frequency.
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